PEMODELAN DATA KEMATIAN BAYI DENGAN GEOGRAPHICALLY WEIGHTED NEGATIVE BINOMIAL REGRESSION
نویسندگان
چکیده
منابع مشابه
Estimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کاملC.5 Geographically Weighted Regression
Geographically weighted regression (GWR) was introduced to the geography literature by Brunsdon et al. (1996) to study the potential for relationships in a regression model to vary in geographical space, or what is termed parametric nonstationarity. GWR is based on the non-parametric technique of locally weighted regression developed in statistics for curve-fitting and smoothing applications, w...
متن کاملStudy of the Geographically Weighted Regression Application on Climate Data
This study used Geographical Weighted Regression (GWR) technique to find spatial relationship between Elevation and climate (Rainfall, Temperature) in Northern Nigeria using climate (Rainfall, Temperature) data from weather stations from 1980 – 2010 obtained from Nigerian Meteorological Agency (Nimet). From the results of the analysis it was shown that there is significant relationship between ...
متن کاملA modification to geographically weighted regression
BACKGROUND Geographically weighted regression (GWR) is a modelling technique designed to deal with spatial non-stationarity, e.g., the mean values vary by locations. It has been widely used as a visualization tool to explore the patterns of spatial data. However, the GWR tends to produce unsmooth surfaces when the mean parameters have considerable variations, partly due to that all parameter es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MEDIA STATISTIKA
سال: 2017
ISSN: 2477-0647,1979-3693
DOI: 10.14710/medstat.9.2.95-106